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PASSIVE INFRARED SURVEILLANCE,
PART II: THRESHOLD-CROSSING RECEIVERS

INTRODUCTION

The objective of an infrared surveillance receiver is to passively detect targets at long
range while keeping false alarms acceptably infrequent. In this report we begin with a review of
the surveillance-receiver analysis model developed in Part 1 [11, which relates expected system
performance to appropriate descriptions of the background scene, the electro-optic sensor, and
the structure of the signal processor. We then apply the principles elucidated in Part I to the
processor design problem. Some of the ideas underlying the approach and some of the main
results are summarized below.

The signal processor must examine the preamplifier output waveform and classify it either
as targetlike or backgroundlike in structure, according to a set of criteria chosen by the system
designer. Since the structure of the time variations in the video signal figures so importantly in
how well the processor performs, we now discuss the mechanisms that give rise to these time
variations.

The video waveform at the output of the postdetector filter of a scanning background-
limited (BLIP) photodetector displays fluctuations having two fundamentally different origins:

* Quantum noise. Time-of-arrival fluctuations of the individual photons incident on
the detector cause random variations in the photosignal called quantum noise or photon noise.

* Background-structure-induced fluctuations. Scanning the sensor across spatial varia-
tions in the scene radiance induces time variations in the photosignal referred to as
background-structure-induced (BSI) fluctuations.

Each of these two basic mechanisms enters into the statistical representation of the video signal
in complementary, but distinctly different, ways.

The background-structure-induced fluctuations enter into the statistical description of the
video signal as a modulation imposed on the mean value of the video. Photon noise enters into
the statistical representation of the video as the origin of the variance of the video about its
mean. The statistical characterization is complete once the time-varying mean and variance of
the video signal are specified, since the video is a nonstationary Gaussian random process.*

Manuscript submitted September 14, 1979.
'This fundamental description or the video-signal statistics has apparently not been previously applied to the passive-
surveillance problem. Validity of the nonstationary Gaussian model for the video is assured whenever the expected
numbcr of photons incident on the detector during a sensor dwell time is much greater than unity [21.
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Each of the candidate processor designs we describe in this report consists of two parts:
one part for estimating tne mean video signal (as determined by the background structure), and
a second part for estimating the noise variance due to quantum noise. A main result in this
report is the proposal of a new signal-processor structure for generating high-confidence esti-
mates of the time-varying rms quantum noise. Implementation of the proposed quantum-noise
estimator requires a sensor with either true dc response or synthetic dc restoration.

The second main component of the signal processor, the mean-video estimator, has a
more critical impact on system performance than the quantum-noise estimator when operating
against highly structured scenes. Unf'ortunately, the mean-video estimator is also more difficult
to design, since the designer is required to make assumptions regarding the nature of the struc-
tured background.

We concentrate ou. discuz=ion of mean-video estimators on three types of linear filters,
evaluating their performance against a succession of increasingly complex model backgrounds:

0 uniform scenes of known radiance,

b uniform scenes of unknown radiance,

# slowly varying nonuniform scenes, and

* scenes containing objects of arbitrary contrast and size.*

Improved mean-video estimators can no doubt be developed by incorporating actual meas-
ured background scenes into the processor-design-and-evaluation procedure and by expanding
the ,cope of candidate processor designs to include nonlinear algorithms as well as linear ones
[3]. Although a representative database of distributions of measured background infrared radi-
ance is thus required both for designing and assessing more advanced processor algorithms, we
do not consider the availability of such data in this report.

In addition to the limited scope or our model backgrounds and mean-video-estimation
algorithms, a number of implicit assumptions underlie the approach to receiver design outlined
above. Perhaps foremost of these is the basically deterministic nature of our model back-
grounds. For example, the only requirement on each member of the class of "slowly varying"
structured backgrounds is that the relative change in radiance from one sensor dwell time to the
next be much smaller than unity. We make no attempt to give a statistical description, such as
a probability density or correlation function, either to individual scenes or to the ensemble of
scenes.

The utility of the "unknown bilt nonrandom" infrared-baqckground representation is ration-
alized by paraphrasing Van Trees [4, p. 4561 (with the words in brackets modifying the original
text):

"It is sometimes unrealistic to consider tie signal ... as a random waveform.
For example, we may know that each time a [failsc alarmi occurs tl-c [back-
ground scene] will have certain distinctive features. If the lbackgroundl is

'lihis final category of model backgrounds subsumes the class or rcal backgrounds containing poigrt objects (such as tar-
gels) of cilher positive or ncgative contrast.

2
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modeled as a sample function of a random process we may average out the
features that are important Here it is mor.- useful to model the [back-
grou,'dl as an unknown, but nonrandom, waveform."

The spatial correlation function (or its Fourier transform, the Wiener spectrum) is an
example of a statistical scene description that illustrates this point., Typically, the presence or
absence of a point target in a given scene has a dominant effect on system perf, 'mance while
having a negligible effect on the correlation function of a large, structured scene

Since we require a deterministic description for the background spatial variations, we
sometimes refer to ot performance model and our performance assessments as background
conditional. Another implicit assumption in our design procedure concerns the restricted
nature of the target/background discriminant that we use.

Of all the possole target/background discriminants, such as radiance variations with
time*, space, polarizption, and spectral content, we will consider only the spatial discriminant.
Moreover we will make no attempt to exploit the spatial character of backgrounds. Any
attempt to do so is complicated by the enormous diversity of structure displayed by natural
scenes. Instead we will key on the known point character of the target. Each time we propose a
candidate processing structure, we will ask the same question:. Are there any nonpointlike struc-
tural features that could induce a threshold crossing? If so, the signal processor will be
modified in a way intended to correct the apparent deficiency. Our ultimlate objective is to con-
struct a receiver that is sensitive only to the presence of pointlike objects in the sensor's field of
view.

At present the limiting effect on system performance is generally background structure
rather than d-:tector sensitivity. Thus improvements in detector sensitivity are of little use,
unless we can trade off sensitivity for improved performance against structured scenes.

In the final part of this report we will examine the usual search-set rule of thumb relating
electrical bandwidth and sensor dwell time. We will find that the use of large video
bandwidths, in violation of the rule of thumb, enables us to sacrifice some degree of perfor-
man:,. against uniform backgrounds in the interest of enhanced performance against nonuni-
form backgrounds. Fortunately the performance degradation thus incurred against uniform
scenes can be offset by means of focal-plane detector arrays (FPA) employing time-delay-and-
integration (TDI) logic. Thus, we will establish a concrete link between advancements in com-
ponent technology and overall system performance.,

BACKGROUNDF; Concepts and Definitions

The two conventional parameters for measuring how well the infrared search-and-track
(IRST) sensor accomplishes its dual objectives of target detection and false-target rejection are
the probability of target detection (PD) and the false-alarm rate (FAR)

"For example tracking dlgofritims are neiltier modeled nu, dilusied, e',en thoUgl! LIlhc m1a pl an imporiant rule In
target/bakground discrimination a• bell ao target tracking 151

3
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The IRST performance model described below [11 requires as input complete descriptions
of the IRST sensor and the scene radiance distribution (possibly including a target). As output
the model generates the probability that the IRST device declares (rightly or wrongly) a target's
presence in the scene. A priori knowledge as to whether a target was in fact present in the
specified scene allows interpretation of the target declaration probability (mj) either as a target-
detection probability (PD) or as a false-alarm prGbability (PFA).

Photon fluctuation noise is the only stochastic aspect of the model; the background must
be specified as a radiance map of arbitrary, but deterministic structure. Thus the Performance
"predictions made with this model are background conditional.

The IRST analysis model that follows applies to threshold-comparison receivers configuredI as in Fig. 1.. The current X(t) at the output of the detector is input to an electrical filter of
transfer function H(f).. The output current Y(t) of the electrical filter is compared with a
threshold Y0(t). If Y(t) exceeds the threshold, the presence of a target is declared; otherwise
no target declaration is made.,

DIRECTION OF

BACKGROUND XDETECTOR H
YMI

YM> O ESTABLISH

THRESHOLD
YES•

, TARGET LN

DECLARATIO

E N:TSOCA:NNINEG

I~CLAr,--T,]ONI

Fig I - A basic threshoid-companson receiver The photodetector
in this figure is idealized in that it is presumed to have a perfect all-
pass electrical fi.quenc)y characteristic, the frequency-dependent part
of the detector responsitivity is lumped together with the transfer
function of the posidetector filter to obtain H (,) A target declara-
tion is made whenever the filtered current Y(t) exceeds the thres-
hold level Yu(r)

Figure 1 suggests that the threshold-establishing mechanism should suppress clutter-
induced threshold crossings (false alarms) by increasing Yo(t) when Y(t) is clutterlike. Rather
than allow Yo(t) to take on an a priori constant or functional value, it is necessary to establish
the threshold by some means that adapts Yo(t) to the prevailing background conditions.

Proper operation of the processor requires that Y(t) < Yo(t) when there is no target in
the sensor's field of view A threshold-crossing event is defined as taking place at any time tr(

4
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such that Y(tTc) " YO(tTc). All threshold crossing detectors are presumed to be sensitive only

to positive-slope crossings, for which*

('(tc) > ko (trc). (1)

Since the current Y(t) is a random process due to time-of-arrival fluctuations of the light
quanta incident on the detector,

0 threshold crossings are random events,

0 the threshold-crossing times trc are random variables, and

0 the number of threshold crossings (J) that occur during a specified time interval :s
an integer random variable.

We define the average value ef Jas the mean crossing count mj:

mj- E[J), (2)

where the statistical expectation operator E{'I denotes an average value over the photon
fluctuation statistics of the incident light I1l.

We now introduce a threshold-crcssing rate rhi to help explain the relationship between
mj and the conventional search-sct performance measures PD and FAR [1), By definition

mj f E fn() di, (3)
/0

where I is an appropriately chosen time interval.

It is generally found that the principal contributions to the crossing-count integral in Eq
(3) accrue in the neighborhood of a discrete set of times which in turn can each be associated
with a structural feature in the scene. As the IRST sensor scans across a target (or a back-
ground feature thi~t simulates a target), the .rossing rate Phy(t) becomes a sharply peaked,
pulselike waveform.

We now define the time interval 1, as tne entire period of time during which the sensor is
scanned across a single structural feature in the scene (such as a local maximum in the radiaice
distribution). By presumption, 1, is a subinterval of the total scan interval 10 in Eq. (3). It can
be shown that the increment in mj associated witu the interval I,, that is,

AmjUl) E- f thMt dt, (4)

is generally a number beween 0 and 1:

0 < Amj(l,) < 1. (5)

We show in Part 1 [(1 that Amm(l,) may be interpreted as the probability of a threshold crossing
sometime during the interval i,, that is, as the probability of a target declaration during the time
interval 1,.

'By con.entf.ior. dotted ,artable denotes the time derivative of tue sorresponding undottcd •adr blv

5
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If the structural feature scanned during the interval 1, is known a priori to be a target, we
interpret the probability of target declaration as a probability of target detection:

PD - Am(I) (6)

Conversely, if the IRST sensor is known a priori to be scanning a region in space that does not
contain a target during 1, we interpret the quantity 4mr(l,) as the probability of a false alarm
ouring the interval I,:.,

PF4(I,) - Arns(l,), (7)

Dividing the total scan interval Io into a succession of disjoint subintervals I,, each of which
brackets an identifiable structural feature in the scene, we can write the overall false-alarm rate
as the expected number of false ilarms during 10 divided by the duration of /0

FAR r-" " PtA(I,). (8a)

Thus, from Eq. (7), 
u

IAR Amje(l) (false alarms per second), (8b)FA -T( 4)

where T(lo) is the duration of time interval 1o (seconds) and PFA(I,) - Amj(l,) is the probabil-
ity of a false alarm during time interval !..

In summary, target detections and false alarms are both manifested by the signal proces-
sor as threshold crossings. Consequently we can express the search-set performance measures.
PD and FAR in terms of a threshold-crossing-rate function hj(O),

Following the next subsection we will formulate the crossing rate tm. in terms of appropri-
ate characterizations of the IRST sensor and the background scene under observation. We will
develop the formulation for the threshold-crossing rate msj in two steps [1):

* First, we will express the quantities my(t) and ay as functions of the scene radiance
distribution and various optical and electrical attributes of the IRST device., We will define the
quantities my(t) and o}y(t) as the ensemble mean value and variance of the filtered current
Y(t) (Fig. 1), Analagous expressions for the mean and variance of Y(r), Y0(t), and Yo(t) are

also required, and we will present them. All such mean values and variances, individually and
collecttvely, are referred to as the current statistics of the IRST sensor.

* We will express mý,(t) in terms of the current statistics (as a function of m, , Yr , etc.).

The expression for the threshold-crossing statistic Pij in terms of the statistics of Y(t) and
"Yo(t) is devoid of physical content: it applies equally well to any nonstationa-y Gaussian pro-
cess. We will introduce all of the physical parameters - the optical and electrical characteristics
of the IRST device and the radiance of the background scene - through the formulation for the
current statistics.

Current Statistics

The primary current statistic of interest is the average value mn(t) of the detected photo-
current X(t) (Fig. 1)

pmv(t) = EIX(t)}. (9)

6
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As in Appendix A, mx(t) can be written as a function of the scene radiance distribution and a
number of important IRST sensor parameters.

The detected current X(t) and filtered current Y(t) are related by the linear system-
input/output relation

Y(t) - h(t-r) X(i) dT= h(t)@X(t). (10)

The symbol e is a shorthand notation for the convolution process defined by the integral
expression in Eq. (10)., Also, h(t) in Eq. (10) is the impulse response of the postdetector filter;
that is, h (t) is the Fourier inverse of the filter characteristic H(f) in Fig. 1:

H(f) - f h(t) exp (-j2irft) dr. (11)

When the expected value is taken of both sides of Eq. (10), it follows directly from Eq.
(9) that

my(t) =- EY(t)) - hi(t)®mx(t). (12)

The following relationship can also be found directly from Eq. (10):
mk(t) _=- E( k'(t)) - thy(t), (13)

Expressions similar to Eq. (12) are also required for the quantities ary(t) and Crr(t),
where by definition

l2(t)- Y(t)-m,(t)]2) (14)

and

Y':(t) - Eli )'(t)-m• (t)]2. (15)

An adaptation of Eq. (4.3.13) in Ref., 6 leads to

a 2(t) 1 eh2(t)®mx(t), (16)

where e is the electronic charge and h(i) and mx(t) are the same quantities as in Eq. (12). As
'in Appendix B of Part 1 (11, it follows from Eqs. (10) and (16) that

or (t) - e(h (W)V2 ®0mx(1), (17)

For the special case of spatially uniform scenes, the analysis of Appendix A shows that

m% is time independent., It then follows from Eq. (12) that

my - mxf, h(t) dt. (18)

However, from Eq. (11)

H(0) - f i h() di (19)

Thus, from Eqs. (18) and (11)

m) = H(O)mx (20)

7
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for uniform backgrounds. For bandpass transfer functions, H(0) - 0. It follows from Eq. (20)
that Y(t) is a zero-mean process for the special case of uniform backgrounds and bandpass
postdetector filters.

Similarly it can be shown from the Parseval relation for Fourier transforms

f h2(t) dt - f. IH(f)12 df (21)

"that Eqs. (16) and (17) simplify as follows in the uniform background limit--

S-emxJf IH(f)12 df (22)

and

" emxfo (2 rf)2 IH(f)12 df. (23)

Assuming that the transfer characteristic H(f) has been normalized to a peak value of
unity, that is,

max H(f) - 1, (24)
f

we define the conventional noise bandwidth of H(f) as

Af =_ fow IH(f)12 df., (25)

It follows from Eqs. (22) and (25) that

Y - 2 emx Af, (26)

which is the usual Poisson shot-noise variance formula (given in, for example, Ref., 7), By
inference Eq. (16) is a generalization of the usual shot-noise variance expression to nonstation-
ary shot-noise processes.

The motivation for the results presented in this subsection is provided in the following
subsection, in which we express the threshold-crossing rate thj(t) as a function of the current
statistics. (It should be recalled from the Concepts and Definitions subsection that the usual
search-set performance measures PD and FAR may then be calculated in terms of the crossing
rate thp.)

In summary, the current statistics my, m , a0 y, and o-y may all be written as relatively
simple functions of the postdetector filter impulse response /i(I) and the average value my(t)
of the unfiltered current X(t) (Fig. 1):

- Y(t) - /I(t) ®mx(t), (27)

m1 =t) -hi tn(t), (28)
21rt) = eh2(t) ®mx(t), (29)

and

o,2 W -- el[h(0)1 ®mAW(t). (30)

Expressions for the threshold-current statistics can be written directly by analogy to Eq,. (27)
through (30) for the threshold approach depicted in Fig. 2:

8
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MrY0(t) - Kh0 (t - Td) ®mx(t), (31)

mYot -' myo(t), (32)

0y 0(t) - eK h02 (t - Td) ®mex(t), (33)

and

r Ky (t) - eK oh0 (t - Td) 2 ®rmx(t), (34)

where K and Td are the gain and time delay respectively in the threshold circuitry and ho(t) is
the Fourier inverse of the threshold filter characteristic H0 (f) (Fig. 2)..

2,, YO

Fig. 2 - A simple adaptive-threshold scheme. The transfer function
exp(-j27rf Td) introduces a delay of Td seconds, ensuring decorrelation of the ran-
dom processes Y(t) and Yo(t) Figure 1 shows the significance of the random sig-
nals X(tW Y(t), and Yo(t).

The mean unfiltered current mx(t) that figures so prominently in Eqs. (27) through (34)
is expressed in Appendix A as a function of the scene radiance distribution and a number of
important IRST sensor parameters.

Threshold-Crossing Rates

We will now briefly outline the method developed in Part 1 [11 for calculating the average
number of times mj that the random current Y(t) crosses the random threshold Yo(t) during a
specified time interval (Figs. I and 2), The relationship between the mean crossing count mj
and the usual search-set parameters PD and FAR was briefly discussed in the Concepts and
Definitions subsection of this report and discussed in greater depth in Part I [1].

We first express the crossing count as the time integral of a threshold crossing rate thi(t)
(Eq. 3). We then write the crossing rate thj as a function J the current statistics as*

thj(t) - thj,(t) expt-u 2 (t)/21, (35)

where by definition
StmJo0) =_ (210)-1 ((r y, 0oc la Vo)., (36)

*Equation (35) for m'j is not strictly valid in the neighborhood or "mean-crossing times" (to be defined by Eq (42)) A
more general formulation for ;ij valid everywhere is derived in Part I Ill However, as we wiil note following Eq
(42), the more general expression for m' is not usually required, since it integrates to unity in the neighborhood of 0
mean crossing 11,21

9
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Also,

0.2 o c2+ a2 Yo (37)

2 _ Y 2 2 (38)0" yyo -- 0 y + 0".o

and

u(t) =- (m ar- my)/0y Yr0 . (39)

As indicated by Eqs. (4), (6), and (8), evaluation of the important search-set parameters
PD and FAR requires the time integration of Eq., (35) to obtain the mean crossing count mjS over prescribed intervals of time-(ove prr f t thj(t) dt, (40)

where I1 is the time interval of interest.,

,1 When mrx(t) is slowly varying compared to h (t), it can be shown that thjo(t) is practically
constant with time (as will be expressed by., Eq. (48)). In this case, it follows from Eqs (35)
and (40) that

mj - mjhj0 f/I exp[-u 2(t)/2] dt.. (41)

As we will now discuss, the integration in Eq. (41) is often quite simple to perform.

Mean-Crossing Times and Times of Closest Approach

Experience with the numerical evaluation of Eq., (41) has shown that the principal contri-
butions to the integral accrue in the neighborhood of a discrete set of times. Moreover, it has
been shown that these important discrete times are of two types. "mtan-crossing times" and
"closest-approach times" [1,2].,

As illustrated in Fig. 3a, the mean-crossing times t,, are those times that simultaneously
satisfy the two conditions

my(t,,mc) - myo(tmc) (42)

and
ýhY(t,,•) > MhYo (t,,c) ,, (43)

Fir each solution of Eq. (42) that satisfies constraint (43), that is, each time the mean current
my(t) crosses the mean threshold mya0(t) with positive slope, the expected number of crossings
mj is incremented by unity. Whenever mean crossings exist during the interval 1, it is gen-
erally not necessary to perform the integration in Eq. (40); in this case the expected number of
threshold crossings mj is well approximated by the number of mean-crossing times t,, during
the interval I., Thus, the expression for th, is generally not needed to evaluate the contribu-
tions to mj that occur in the neighborhood of mean crossings, since each mean crossing gives

10
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rise to a threshold crossing [1].* Clearly it is desirable that no mean crossings occur except
when there is a point target in the scene; this may be taken as the first principle of search-set
design for operation against structured backgrounds.

Fig. 3a - A "mean-crossing time" denoted t,,. A
myo mean crossing occurs when the mean video signal

my crosses the mean threshold sigm., my0 with
positive slope. Asymptotic evaluation of the

M y crossing-rate integral, Eq. (40), shows that the pro-
bability of a threshold crossing approaches unity in
the neighborhood of a mean-crossing time t. [1.

t mc

If my(t) lies below my0 (t) on the time interval 11, that is, if there are no mean crossings

during I, the crossing-count integral, Eq. (40), is generally dominated by contributions accru-
ing in the neighborhood of "times of closest approach." As illustrated in Fig. 3b, closest-
approtch times are those times that satisfy the equation

myo(t:a) - my(tca). (44)

my 0

Fig. 3b - A "closest-approach time," denoted t,,a
The threshold-crossing rate mth typically increases
many orders of magnitude in tho immediate neigh-
borhood of a closest-approach time.

.(my-m,,

I~ Yt

Stco

Fixed- Threshold Processors

For fixed-threshold (FT) processors

a y0 Y- a 0 o -0 (45a)

•-• and
and m)-o - Yo. (45b)

"Although a threshold crossing is assured in the near neighborhood of a mean crossing, the threshold-crossing time
tT(, is not equal to the me.ri-crossing time r,,, since i/-C is a random variable (as stated l'ollowing Eq (1)), while 'r,,
is deterministic

! 11
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It follows from Eqs. (35) through (39) and (45) that

?Vt) - (2r)' (oa/ /ry) exp[-u 2(t)/2], (46)

where

u(t) - (Yo - m)/cr Y. (47)
The current statistics my, a y, and ck, in Eqs. (46) and (47) are obtained from Eqs. (27)
through (30), and Yo in Eq. (47) is a fixed threshold value.

When mx(t) is slowly varying compared to h (t), it follows from Eqs. (23) and (26) that

th, 0 I- (2IT)- (arr/O'y) . (Af)-I f f 2lH(f)12 d4I = (Af)rms. (48)
Equations (41) and (48), taken together, provide a relatively simple formalism for calculating
the expected crossing count of a fixed-threshold receiver operating against a slowly varying
background scene.

In the limit of time-invariant mx (perfectly uniform backgrounds) Eq. (41) simplifies still

further to

mj - (Af),ms exp(-K 2/2) MIT(), (49)
where T(MI) is the duration of 11, (Af),ms is once again given by Eq. (48), and the fixed thres-
hold Yo has presumably been adjusted such that

u - (yo - my)/cry - K. (50)
Equation (49) is originally due to Rice [8] and has often been applied to the calculation of
false-alarm rates for infrared search-set operation against uniform scenes [9,101.,

Initial Assessment of Adaptive Vs Fixed-Threshold Processors

Some of the advantages and disadvantages of adaptive-threshold (AT) processing as com-
pared with fixed threshold (FT) processing may be evaluated by comparing Eqs. (39) and (47),
appropriate for AT and FT receivers respectively.

It follows from Eq. (47) that an FT processor suffers a false alarm whenever the peak tar-
get amplitude is less than the peak clutter amplitude. This situation is depicted in Fig. 4a.
Thus target-to-clutter ratios less than unity cause the FT processor performance to be
"background-structure limited" (BSL). In this case each false alarm can be associated with a
.,ructural feature in the background. The effect of quantum noise (as reflected in the magni-
tudt; of cr y, for example) is then totally overshadowed by background-structure effects.

Inspection of Eq. (39) and Fig. 4b shows that an adaptive-threshold (AT) processor need
not suffer background-induced mean crossings. If the filter Ho(f) (Fig. 2) can be chosen such
that my 0(t) tracks the background-induced variations in m•(t), the background-induced mean
crossings can be eliminated. Although false alarms may still occur as random events due to
quantum noise, the probability is generally small that any given structural feature in :he scene
will cause a false alarm.

12
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my(t)

tpt

to

Fig. 4a - A critical shortcoming of fixed-threshold processing. The
slowly varying maximum centered at tp has its origin in the nonuni-
form background scene The narrower peak at to is due to a target.
The likelihood of a false alarm grows rapidly as the threshold level
yo is reduced. There is no way for tn-. constant-threshold processor
to dctect the target peak at to without also incurring a false alarm
a.,sing from the clutter peak centered at t,. A plot of the
threshold-crossing rate thi(r) corresponding to this figure would
show that the probability of a threshold crossing, and hence a false
alarm, is far greater at time t, than at any other time, since rp is a
time of closest approach.

q, my(t)

YY
Z 0(t)

ip t

to

Fig. 4b - An important advantage of adaptive threshold pro-
cessing. The mean current mi,(t) is the same as for Fig, 4a.
The adaptive threshold 10(t) accurately tracks the slowly very-
ing background signal but not the more rapidly varying target
signal. Thus, ta:get detection is assured, and the probability of a
false alarm is kept acceptably small. As contrasted with the
situation of Fig 4a, the probathlity of a false alarm is now no

4 greater in the neighborhood of time t, than at any other time,

An IRST sensor operating in this regime (such as in Fig. 4b) is said to be "quantum-noise
limited" (QNL) in its performance., In this context QNL operation is clearly preferable to BSL
(background-structure-limited) operation.

13
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Uniform Scenes of Known Brightness

The adaptive-threshold-performance advantage just described is realized only when the
background scene is nonuniform. The performance of an adaptive-threshold processor is infe-
rior to the performance of a properly designed FT processor when .he background scene is uni-
form and of known brightness. In this case the adaptive-threshold fale-alarm rate (FARAT) is
greater (worse) than the fixed-threshold false-alarm rate (FARFr):

: FARAT > FARFT., (51)

For the false-alarni-rate comparison expressed by Eq. (51) to be meaningful, the adaptive-
threshold gain K in Fig. 2 has been adjusted to achieve equal target-detection sensitivities for
the two processors being compared.

•' We now define uniform-background false-alarm-penalty (FAP):

FAP -- 10logio(FARAT/FART) dB.: (52)

Uniform -Background False-Alarm-Penalty

The uniform-background false-alarm penalty is a measure of the performance disadvan-
tage that accrues when an AT processor is used against a uniform-background scene of known
brightness. As shown in Part I [11, the false-alarm penalty of the processor structure in Fig. 2
may be written as

FAP - 2.17 1 aj ° + 5 logioil - a(l - a)) dB. (53)

where by definition
a Afo/Af (54)

and where Af and Afo are defined as the noise-equivalent bandwidths of H(f) and He(f),
respectively (Eq. (25) and Fig. 2).

As an ,xample, we assume that the threshold constant K in Fig. 2 is adjusted until "the
threshold is Oive sigmas above the mean," that is,

myor -y (55)

when the search set is observing a uniform scene of known brightness. Furthermore we
assume that the noise bandwidth of the target filter H(f) in Fig. 2 is twice as large as the noise
bandwidth of the threshold filter Ho(f):

. fO . (56)
Af 2'

It follows from Eqs. (53) through (56) that the false-alarm penalty is

FAP - 17.46 dB, (57)

14
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corresponding to a value of FARAT (adaptive-threshold false-alarm rate) about 56 times worse
than FARFT (fixed-threshold false-alarm rate). Clearly this is a severe degradation in perfor-
mance.

Time Delay and Integration

Fortunately the disadvantage of AT processing can be more than recovered by means of
time delay and integration (TDI). The effect of TDI is simply to multiply the mean current
4mx(t) by the number N of series TDI detectors. It follows from Eqs. (27) and (29) that TDI
multiplies my and a, y by the factors N and N'12 respectively., It can be shown that

MIi_+M 121+5 gl(- I 2 a - m my +5 log - a(1 - a)] (58)

for the AT processor depicted in Fig. 2, employing N series TDI detectors. It follows from Eqs.
(55), (56), and (58) that

FAPTDI - [(3 - 21) (18.08) - 0.621 dB (59)

for the example given., Thus the uniform-background false-alarm penalty sufrered by the AT
processor of Fig. 2 is more than compensated by the use of just N - 2 TDI detectors.

*1 Apparently the false-alarm rate can be made arbitrarily small by increasing the number of TDI
detectors. Alternatively the false-alarm rate can be held constant with increasing N by making
the threshold gain K (Fig. 2) inversely proportional to N'12. The TDI performance advantage is
then realized as a target-detection sensitivity enormously increased over that of the N - 11
single-detector IRST sensor. IRST performance against uniform scenes improves monot,,,i,-
cally as the number of TDI elements is increased.

Again, the false-alarm penalty is meaningful only as a characterization of AT processor
performance against the most benign type of background-a uniform background '.)f known
brightness,"' However, the motivation for employing AT processing lies in the unfr'.unate ,eel-
ity that natural-background scenes are often highly structured.

In following sections of this report we will characterize a number of ca.iitdate :' x..ng
schemes with respect to their performance against a succession of more , stries. We
discuss the rationale underlying the design of these candidate processors in the foilvwing sub-
section..

Ideal (CFAR) Adaptive-Threshold Receivers

The candidate processor designs described in this report each consist of two parts: one
palpaL, f'r estimating the mean video signal my, and a second part for estimating the rmis quan-

I turil noise a-). fntre ýn;gr-! prmce-or establishes the adaptive threshold Y'(t) as shown in Fig, 5:

Yo(t) = thf(i 1 ý K•&(t), (60)

'The relevance u, tcne radiafle mn, to search set performance agalnst unitorm scenes follo'AS directly front Ecs (26)

and (AS) Tile rluise Ur~ame 41 ino'reaw•es linearly %tilt scene radiance ml Titus operation against bright uniform
scene's occisions decreas .d target detection sensitivity and/or imnreased false alarm rate as compared titlth operation

against uniform sienes of lesser brightness

15
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rin_ gt OUANTUM- I M't)
N___•OISE ESTIMATOR

A ... .JI (• Yo (0

MEAN VIDoEO-" my M,
I -ESTIMATOR I

X(t) y M

Fig. 5 - Generic structue of the signal processors considered in this
report. The expected value and rms value of the video signal Y(t)
are denoted as my(t) and a' y(t) respectively, The signals tny(t) and
&y(t) are estimates for my(t) and a' (t). The adaptive-threshold
constant K is the gain of an ideal amplifier. As shown in Fig. I, a
target's presence is declared (rightly or wrongly) whenever the video
signal Y(t) exceeds the threshold signal Yo(t).

where mr y and & y are estimates fur my and -r y respectively., The adaptive., threshold constant K
in Eq. (60) is a design parameter. The estimates ty and & y and the threshold Yo are all sto-
"chastic processes. With the expected values of Amy and & y denoted as mr and m,, respec-

tively, it follows from Eqs. (39) and (60) that

u() - K (m./o la). 0  + (mr, - my)/rarYo0  (61)

Equation (61) can be written as

u(t) - K(1 + e&) + X ,AY, (62)

where the normalized mean estimation errors e., and e. are defined as

C'ý -- (m,4 - my)/my (63)

and

E5  =-(m¾ - ) (64)

Also, as will be expressed by Eq. (C6),

X -- (mt/oar) " O(100), (65)

and

K - 0(00).. (66)

* When no target is in the sensor's field of view, "ideal" receiver performance is expressed in
terms of the estimation errors as

aE,.h << X-z - 0(10-) (67)
and

i 1 << K-t - 0(10-') (68)

From Eqs. (62), (67), and (68)

u(t) K. (69)

16 I



NRL REPORT 8367

Thus Eqs. (67) and (68) assure that u(t) is rendered time invariant by the AT processor when
no target is in the sensor's field of view.

From Eqs. (41) ard (69),

mj - FAR . T(I,) - tj,0 exp(-K 2/2) " T( 1)., (70)

Equation (70) is identical to the crossing-count expression for uniform scenes, Eq., (49).

The kind of processor just described is called a constant-false-alarm-rate (CFAR) proces..
sor, since the threshold-crossing rate is now independent of time; that is, a crossing is no more
likely to occur during scanning of a region of nonuniform background than during scanning of a
region of uniform background. With reference to Fig. 4b for example, the crossing rate is now
no greater at t, than at any other time..

Unfortunately the CFAR processor is generally a nonrealizable ideal. Depending on the
structural features present in the background radiance distribution, large estimation errors

and e, may be unavoidable, giving rise to appreciable time dependence in Eq. (62) for u(t).

We will show numerical examples that illustrate this point in Figs. lIb, 12, 14, and 15.,

When a target is in the sensor's field of view, "ideal" receiver performance is obtained
when the time interval I, bracketing the target scan coittains a mean-crossing time r,,, for
which (Eqs. (42) and (39))

Su(t,,) -0., (71)

As we discussed fo!lowing Eq. (42), a mean c;ossing assures Mat [1l

Po - m ;-, 1, (72)

as desired.

Mean-Video Estimators

Comparison of Eqs. (67) and (68) shows that the requirement on t,/, for ideal receiver

perfe.'mance is two orders of magnitude more severe than the requirement on e. In this
sense the mean-video estimator may be deemed a more critical component than the rms
quantum-noise estimator.,

In the following sections we will concentrate our discussion of mean-video estimators on
three types of linear filters (Table I), evaluating their performance against a succession of
increasingly complex model backgrounds:

* uniform scenes of known radiance,

* uniform ý,enes of unknown radiance,

• slowly varying nonuniform scenes, and

• scenes containing objects of arbitrary contrast and size (such as a target).

17
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Table 1 - Candidate mean-video estimators. All of
the adaptive-threshold signal processors we consider in
this report have the generic form indicated in Fig. 5, in-
corporating a filter for estimating the expected value of
the video signal Y(t). We consider the use of thre, e
types of linear filters as candidate mean-video estimc,
tors in order to illustrate our approach to processor
design and evaluation..

Signal Processor Mean-Video Estimate tr(t)

Fig. 6 0

Fig. 10 Y(t- Td)

Fig. 13 1/2 MY(t- Td) + Y(t+ Td)]

Greatly improved mean-video estimators can no doubt be developed by incorporating actual
measured background scenes into the processor-design-and-evaluation procedure and by

, expanding the scope of candidate processor designs to include nonlinear algorithms as well as
t linear ones.

UNIFORM SCENES OF UNKNOWN BRIGHTNESS

In. this section we will illustrate the potential advantage of adaptive-threshold (AT) pro-
cessing over fixed-threshold (FT) proc( sing by analyzing IRST performance against the sim-
plest possible type of incompletely specified scene: the uniform scene of unknown brightness.

We will first show that the unknown brightness level can badly degrade the performance
of an FT system.. We will then analyze the AT processor structure of Fig. 6 and show it can
maintain the same false-alarm rate (FAR) against all uniform scenes regardless of brightness.
In other words the Fig. 6 processor is said to operate in the constant-false-alarm-rate (CFAR)
regime against the class of uniform backgrounds of unknown brightness.

A

;i2vfTd H0(f A 41T (2 f > P' 4111'
e y

Fig 6 - Candidate processor structure that achieves constant-false-alarm-rate
(CFAR) performance against all spatially uniform scenes regardless of bright-
ncss The transfer functions H(t) and H1(f) are related by Eq (BI) Realiza-
tion of HO(j) requires either true dc response or dc restoration Comparing
this figure wilh Fig 5 shows that the mean video has been estimated as having
a zero value A unique feature of this processor is that the expected value of
Cr is equal to ne rmis value of 1 (0) (as shown in Appendi• B)
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Fixed-Threshold Processors

We analyze the false-alarm-rate performance of an FT processor against a uniform scene
by use of Eqs. (49), (50), and (20) with the assumption that H(O) - 0, resulting in

FAR - (Af),,s exp[- (yW/o" r)2 (73)

It follows from Eqs. (26) and (AS) that the current variance craf [A21 in Eq. (73) is directly pro-
portional to the scene radiance mL(W ' cm- 2 . r-]:.

crer a j - CmL, (74a)
where

C (2e 4f KoRIAet).. (74b)

We define the quantities Ko, R1, and Adet in Appendix A.

For illustration we assume that an acceptably low false-alarm rate is achieved by choosing

the fixed threshold Yo in Eq. (73) as follows:,

Yo - 8 a YC _ 8 (CmL(,) 1/2, (75)

where mLc is the radiance of the scene chosen to initially calibrate the IRST 'nd cr yc is the
corresponding value of cry obtained from Eq. (74)., It follows from Eqs. (73) through (75)
that the false-alarm rate is given by

FAR - FAR, exp [3 2 (mL - mLc)ImLl, (76)

where FAR, is the calibration value of FAR:-
FAR, =(f, exp(-32)., (77)

It follows from Eq. (76) that a 20% increase in the scene radiance above the calibration

value,

mL - 1.2mL(', (78)

causes a 200-fold degradation (increase) in the false-alarm rate.,

This simple example clearly demonstrates that large-scale uncertainlies in the false-alarm-
rate performance of fixed-threshold processors are induced by relatively small uncertainties in
scene brightness.

* Adapt ive-Threshold Processors

In this subsection we analyze the false-alarm-rate (FAR) performance of the adaptive-
threshold processors depicted in Figs. 2 and 6 against uniform scenes of unknown brightness.

As discussed in Part 1 [11, Eqs. (37) and (38) simplify as follows for uniform backgrounds
for the Fig. 2 processing structure:
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Jo - crJO(1 + a) (79)
and2

an od (I + a3), (80)

where a is defined by Eq. (54) as the ratio of the noise bandwidths of Ho(f) and H(f). From
Eqs. (35), (36), (39), (48), (79), and (80)

FAR - (Af), I I +a 1 m+ (81)

"If H(f) is a bandpass characteristic, so that H(O) - 0, it follows from Eq. (20) that

my - H(O)mx - 0. (82)

We assume that Ho(f) is a low-pass characteristic, normalized analogous to Eq. (24):

max Ho(f) - Ho(O) - 1. (83)
f

From Eq. (83) and by analogy to Eq. (20)

m Yo - KHo(O)mx - Kmx, (84)

where K is the threshold gain, as shown in Fig. 2.

From Eqs. (82) and (84)

- - KI (mx/oay).. (85)

From Eqs. (85), (26), and (AM)

mro- my K2  ' j C ML. (86)ay z 2e•-f-m m . (8I

It follows from Eq. (86) that the argument of the exponential in Eq. (81) is linearly propor-
tional to the scene radiance mL, Thus the false-alarm-rat, performance of the AT processor
depicted in Fig. 2, like the FT processor analyzed in tht, previous subsection, strongly depends
on the scene brightness. This is due to the incomplete cancellation of the mx factors in the
numerator and denominator of Eq. (86) :' my2, is proportional to mx2, but o-2r is proportional to

mx. We remedy this situation in Fig. 6, by including a square-root device in the threshold cir-
cuitry.,

Figure 6 shows that

YO(i) - K& y(t). (87)

From Eqs. (60) and (87)

Ay(t) - 0 (88)

for the Fig. 6 processor. It follows from Eqs. (61), (82), and (88) that
u~t W- K (m,, Jo- id (89)
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Importantly it is shown in Appendix B that & y as determined by the Fig. 6 processor is an
unbiased estimate for o- :,

m& 0'y'., (90)

From Eqs. (37) and (87)
"". I D + K 2( /o ) (91)

From Eqs. (66), (90), (91), and (B6)

S,1 (m./ crryo) - I = O(10-4) (92)

for the Fig. 6 processor. From Eqs. (89) and (92)

!'u W a~) K. (93)

From Eqs. (41) and (93)

FAR - (Af),,m exp (-K 2/2) (94)

for the structure shown in Fig. 6, where (Af),,,, is given by Eq.. (48) and K is the adaptive-
threshold gain (Fig. 6). Thus the false-alarm rate of the AT processor depicted in Fig. 6 is
independent of the brightness level of the presumably spatially uniform scene.

Our discussion has so far ignored a potentially important complication: Eq. (35) is derived
in Part I (1] subject to the requirement that Y(t) and Yo(t) are both Gaussian random
processes. However, although Y(t) and A, () in Fig. 6 are each Gaussian, the square-root dev-
ice ensures that Yo(t) is not Gaussian. Thus Eq. (35) is not strictly applicable to the structure
of Fig. 6..

However, the following plausibility argument suggests that a rigorous treatment 3f this
problem is probably unnecessary. It follows from Fig. 6 and Eqs. (C2) and (C6) that

ymy0 '-- I J" O(102:3)"

However, from Fig. 6 and Eq. (B3)

my0  Kin,, Y- K y

From the preceding two equations

a. •i O(10-3). (95)

According to Eq. (95) the rms fluctuation of Yo(t) is three orders of magnitude smaller than
the rms fluctuation of Y(t)., Thus it appears unlikely that the statistics of (Y - Yo) are appre-
ciably influenced by the statistics of Y0. Consequently it also appears unlikely that a more
rigorous trLatment of this problem would yield a result significantly different than Eq. (35).
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Another important point that we brushed over is the requirement for a low-pass threshold
filter (Eq. (83)). Bandpass characteristics (ac coupling) eliminate some practical problems, such
as 1/f detector noise. However, the present analysis indicates that implementation of an
effective AT processor for operation against uniform scenes of unknown brightness requires
knowledge of the dc component of the photocurrent. We will find in succeeding sections of
this report that dc coupling (or synthetic dc restoration (11,121) is also required by IRST AT
processors designed for operation against structured backgrounds.

STRUCTURED SCENES

We have employed two kinds of background models in the analysis thus far: uniform
backgrounds of known brightness, and uniform backgrounds of unknown brightness. Moreover
we have obtained a processor structure (Fig. 6) that performs extremely well against these types
of backgrounds. In defining a hierarchy of increasingly realistic (and complex) background
models, a reasonable next step ,is the consideration of slowly varying structured backgrounds.*

We will first show that the Fig. 6 processor performs poorly against the newly defined
class of slowly varying backgrounds. We will establish this point by showing that the Fig. 6 pro
cessor is susceptible to background-induced mean crossings against nonpointlike background
structures. The prediction of mean crossings is relatively simple, requiring only the calculation
of the my and my, current statistics. Thus we will illustrate a general principle: point-target

detectors that operate poorly are easily modeled.

The deficiencies of the Fig, 6 processoz suggest a modification in structure that will lead to
another processor (to be depicted in Fig. 10).. Our analysis of the new processor will show that
it can suppress mean crossings by slowly varying backgroundF. Nonetheless we will invoke the
concept of constant-false-alarm-rate (CFAR) performance to show that considerable room for
improvement still remains. We will propose yet another processor structure (to be depicted in
Fig. 13) toward the objective of achieving CFAR performance against slowly varying back-
grounds. The Fig. 13 processor employs a variant of "linear spatial filtering" to establish the
threshold process Y0 (t).

Slowly Varying Scenes

Toward defining what we mean by slowly varying scenes, we rewrite Eq., (27) in the form

my(W) - f h() mx(U - X) dA. (96)

An unresolved point radiator in the field of view (such as a target) induces fluctuations in
mx (W) that are as rapid as those of the' filter impulse response h (t).t However, we assume

"The meaning of slowly varying" in the present context will be expressed quantitatively in the next subsection Quali-
tativeAy it means that all objects in the field of view must be much larger than a single pixel in spatial extent Whether
or not a given scene is slowly varying thus depends on the instantaneous field of view of the sensor
tThis is assured by the usudl design equation 2"fTa 1, where T1 is the d*ell time of the sensor 4nd Af is the noise
bandwtdth of H(J) Ui01
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here that the tVme variations in mx(t) are slow compared to h (t), that is, that mx (W) is not tar-

getlike. This .iustifies writing a three-term Taylor expansion for mx (t - x)

mx (f - x) Q mx(t) - 6thX(t) + .2hiy(0)/2, (97)

Substituting Eq. (97) into Eq. (96) yields
,2 m (t) W Mx k) I0 - Ihx(t) 12 + ihx(t) 13/ 2 , (98)

where by definition

1 oh) dt, (99)

12 lt1() dW , (100)
SI and

ad3 f 2 h (t) dt. (101)

It follows from Eqs. (11) and (99) through (101) that

11 -H(0), (102)

and 
2- 1'(0) (-j2 70 -, (103)

13 - -H"(0) (21r) 2, (104)
where the primes indicate differentiation with respect to electrical frequency f. If H(f) is a

bandpass characteristic, then

H1(0) - 0. (105)

It can also be shown that

HI(0) - 0. (106)

as a consequence of h( ) being a real function of time. From Eqs. (98) th.ough (106)

my (W) = -(8ir 2)-l H"(0) ix (t)., (107)

According to Eq. (107) the bandpass filter H(f) double-differentiates a slowly varying input.

The corresponding approximation to Eq. (29) for a Y is easily shown to be

aY(t) • 2eAf m: W), (108)

As shown by Eq. (B3),

m& (i) - a') (r). (109)

Thus from Eqs. (108) and (109) and Fig. 6

Mto(t) W Km, (W) - K(2erf)1/2 m• 1/2 ). (110)

*It is simple to include one or more higher order terms in Eq (97), however, the three-term expansion is sufikient to
illustrate the point that slowly sarming mx(ti can defeat the processor of H-ig 6 by inducing mean crossings
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In the remainder of this section

0 We will assume that the transfer function H(f) has a simple bandpass characteristic (to
be given by Eq. (111)).

0 We will assign the mean current mx(t) a waveshape many dwell times in duration,
representative of an extended nontargetlike object in the sensor's field of view.

0 We will evaluate Eqs. (107) and (I10) for the mean filtered current my () and mean
threshold my 0(t) respectively and will show that mean crossings occur (Eq.. 42, Fig. 3a,
and the accompanying discussion).: Each such mean crossing is correctly interpreted as a
false target report, that is, as a "false alarm."

* We will conclude that the Fig. 6 processor is not effective for suppressing false alarms
from nonpointlike structural features in the background., The only current statistics
required to make this assessment are my (W) and my, (t)' there is no need to calculate the
other current statistics (cr y, o* y. a y0, G- yo) or the threshold-crossing statistic thj. Thus the

processor is operating in a basically nonstatistical regime: quantum-noise effects (as
reflected in the magnitude of a' y for example) are totally overshadowed by background-i . structure effects. This operating regime, designated as the "background-stroicture-limited"
(BSL) regime, has the characteristic that each false alarm that occurs can be associated

with a structural feature in the background..

Model Filters and Backgrounds

We choose a form of "raised cosine" for the model-filter characteristic H(f) (Fig, 7):

,IH(f)I- sin 2(frff/2f), 0 < f 4 f,, (0lla)
I~~ ==1,f 4• f 1< f2, U.lllb)

- cos2(ar(f - f 2)/2(f 3 - f2)], f2 4, f 1< f3, (0l1c)

- 0, f3 14 .. (fIld)

I H~f) I Fig 7 - Modified raied-cosine model for the filter

characteristic /I(f) Ou: illustrative numerical exam-
1 ~pies in this report all assume that 111(1)1 has the form

depicted here Analytic expressions for JI(f)I and If
appear as Eqs (111) and (114). The analytic expres-
sion for (If),m, (Eq. (48)) is more complicated than
Eq (114) for If However, the numerical value of

- (]),,,,f is usually not much different then the vaiue of
f: fI f2 f• 312
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It can be shown from Eqs. (111) that

H(0) - H'(0) - 0 (112)

and

H"(0) - ir2/2f?. (113)

It follows from Eqs. (25) and (111) that the noise bandwidth of the model filter is

Af - (Sf 2 + 3f 3 - 5f1)/8. (114)

An analytical expression has been obtained for the rms bandwidth defined by Eq. (48) but is
not given here.

Our model background, transformed from radiance to current by Eq. (A6), gives rise to a
* mean detected signal of the following parametric form:.

mx(W) - xO(1 + x[[I + (t/ir) 2•1•. (115)

The parameters x0, r, and x, correspond respectively to a constant background level, the
halfwidth at half maximum of an "object" in the scene, and the object/background peak
contrast. Depending on whether r is large or small compared to the system dwell time (and the
duration of h (0)), Eq. (11!3) for mry(t) is representative of a "clutterlike" or a "targetlike" object
respectively. A representative plot of Eq. (115) is given in Fig, 8. For the present purposes we
assume T is much longer than a dwell time, so that mx(t) is definitely not targetlike,

Fig. 8 - Model nonuniform backgrcand scene,
I(ra /x°} transformed from radiance to average current by Eq.

(A6) Our illustrative numerical examples in this
report all assume that rex(t) has the form depicted
here. An analytic expression for mx(t) appears as Eq.
(115). The parameters x0, T. and x, correspond

X1  respectively to a constant background leCXel, the
halfwidth at half maximum of an 'obiect in the scene,
and the object/background peak contrast. Negative-

(Xt!2) contrast objects are modeled by choosing x, < 0.
Depending on whether r is large or small compared to

- r the system dwell time, our model mx(t) is representa-
tive of a "clutterlike" or a *targetlike" object respec-
tively.

From Eqs. (107), (113), and (115)

my(0) a my(0) [1 - 3(0/)021 [1 + (t/r)2)-3, (116)

where

my(0) - A X 1/8(1" Tr). (117)

From Eqs. (108) and (115)

o'y(t) - (2eAfx0)1'2 (I + X[(l + (I/T) 2i-1'I 2 , (118)

with if being given by Eq. (114).
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Figure 6 Processor

We see that for the Fig. 6 processor

Yot - K & (t - Td)., (119)

Taking the expected value of Eq.. (119) and using Eq. (B3), we obtain

Mt 0(t) - K a y (t - Td), (120)

where a y is given by Eq. (118) for the model filter and model background of the previous sub-
section.

Equations (116) and (120) are plotted in Fig. 9 with the illustrative parameter values

-- 10-' A, (121a)

x,- 1, (121b)

T - 12.5 Td s, (121C)

4Af -5000 Hz, (122a)

f I - 2000 Hz, (1 22b)

(4f),,m - 4034 Hz, (122c)

and

"K - 9. (123)
m mY (10-11 A)

m Fig 9 - lilustrative calculations of the mean video -y

0 and the mean threshold mrn0 for the processor dep-

icted in Fig, 6. Model background and filter parame-
ters are as specified by Eqs (121) through (124) It is
assumed that the sensor is scanning an object 12 5 tar-
get widths in exteni, which is an object far too large to
be a target. This figure shows that the Fig. 6 proces-
sor experiences a mean crossing against the nontarget-
like object, giving rise to a false alarm. Thus, the Fig.

r 6 processor is ineffective against spatially structured
scenes.

From Eqs. (118), (121), and (122) the nominal rms sensor noise is

a'y(o-) - (2e~fxo)1/ - 1.27 x 10-" A.

We calculate the peak contrast in our model background from Eqs. (115) and (121) as

I[rP(0) - m%(oo)I = xOx 1 = I x 10-• A.

Thus the peak contrast in the background is
mk(0) - m%(-o)r()= 790
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times larger than nominal noise-equivalent irradiance (NED of the sensor, for the parameter
values we have chosen (Eqs. (121) and (122)), We assume the system dwell time ih related to
the noise bandwidth 4f by the usual search-set rule of thumb (101

Td - (2A4f)-' 10-4 s. (124)

According to Eqs. (121) and (124) the full width 27" of the object represented by Eq.
(115) is 25 dwell times in duration, and the signal from an unresolved target is about 2 dwell
times in duration. Thus the size of the object represented by Eq. (115) is 12.5 target widths.

As may be seen directly from Fig. 9, the extended object represented by Eqs. (115),
(121), and (124) does give rise to a mean crossing. Furthermore, as we discussed following Eq.
(42), a mean crossing assures that a threshold crossing will occur. However, because the object
under observation is about 12.5 target widths in extent, this threshold crossing must be inter-
preted as a false alarm.

In the next subsection we show that simple modifications to the structure of Fig. 6 result
in a processor design that reliably discriminates between point objects and slowly varying
extended objects, at the expense of some performance against uniform backgrounds.

Improved Processors

Inspection of Fig. 9 shows that the mean threshold m),(t) derived by the Fig. 6 processor

does not increase quickly enough or strongly enough to present a mean crossing. Prevention of
this mean crossing requires that the mean threshold mr,(t) advance in synchrony with the

mean current m (0).,

An AT receiver structure with a more responsive threshold mechanism is shown in Fig

10. Instead of Eq. (120), one now obtains

M tO(t) - t)(t - Tj) + Kur (Y - Td1) (125)

We set the delay time Tj in Eq. (125) and Fig 10 equal to the sensor's dwell time. We
presume that Eqs. (116) through (118) for tt and oa are still valid.

S*" Y Mt

Fig 10 - Candidate processor with a nonzero mean-video estimator Comparison with 1-ig 5 shows

that the mean-video estimate is simply a time-delayed version of the video signal th, (M) - T-)
The rms noise estimate is the same as for the Fig 6 processor, enabling this structure to achieve CFAR
performance against all uniform scenes regardless oi radiance The time-delay element in the threshold

circuit is required to prevent self-thresholding by a target wavtform
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The performance of the Fig. 10 processor is most easily assessed by means of a numerical
example.. Once again we employ Eqs. (111) and (115) as purametric models for
H(f) and mx(t) respectively with parameter values specified by Eqs. (121) through (124). The
corresponding values of my and my. are plotted as functions of time in Fig. 1 la.

Fig. Ila - Illustrative calculations of the mean
video my and the mean threshold my0 for the

"Fig. 10 processor. Model background and Ailter
1, m "parameters are the same as for Fig. 9. The sen-

2 sor is again assumed to swan an object N - 12.5
target widths in extent. Comparison with Fig 9
shows that a considerable performance improve.

-2 11 2 ment has been achieved, since the mean crossing
r presen, in Fig. 9 has now been eliminated

'1i
Comparison of Fig. 1la with Fig. 9 shows that a considerable performance improvement

has been gained: the background-induced mean crossing (the certain false alarm) present in
Fig. 9 has been eliminated. Figure I Ia shows that the mean threshold rn),(i) appears to accu-
rately track the mean current my(W).

However, a performance assessment based solely on visual inspection of Fig. I la is
incomplete and misleading. Once background-induced mean crossings are indicated (as in Fig.
9), the analysis need go no further : the r'arformance of a grossly inadequate processor may be
assessed quite simply, without need to evaluate either or ))oo thp. However, the absence of
mean crosings (as in Fig. I Ia) is not necessdrily indicative of adequate performance. We show
this by calculating a 300-fold increase in the expected number of threshold crosqings over ti'e
time interval it/ri < 2 due to the presence of the nontargetlike object.

From Eqs. (41), (48), and (39)

ms j (Af),,,, expl-u 2 (0)/21 dt (126)

for slowly varying scenes, where

U(I) = W m 1 (r) - ,nl(i)J/ort((1) (127)

From Eq. (37)

= f t (t) = o-,() + Cra (t) (128)

The quantities mt(t), (-)(0), and m), () are calculated from Eqs (116), (118), and (125)
"respectively for the Fig. 10 processor. Evaluation of sin(t) by means of Eqs (126) through
(128) can now be performed, once it is shown how (y) is calculated

From Eq (60) and Fig 10

Y'0) th)(t) + KA &-)(') (129)
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where

thy(t) - Y(t - Td) (130)

From Eq. (130)

S(t) -o. (t - Td). (131)

From Eqs, (131) and (B3)

W*.(t)- (1 - Td). (132)

From Eqs. (132) and (B6)
"~I Wb r; h (t)/oor(t,'- , (t)/M',; (I - T",) =O(o10-), (133)

From Eqs. (129), (133), and (131)
(Y Y(t) W. a,4Y(f a Y(t - Td). (134)

Finally from Eqs. (128) and (134)

I(t o() + or2(t - T1), (135)

where o,(k) and ao,(t - Td) are calculated from Eq (118).p The quantity u d) given by Eq. (127) corresponding to Fig. IIa is plotted as Fig. lib. If
there is no object in the field of view, so that xI - 0 in Eq., (115), the expected number of
false alarms during the time interval it/ri t< 2 is given by

mj - Cif),., 4r - exp(-K'/4) - 3.2 x 10-1, (136)

where the appropriate values for ,. (A',,,,, and K are obtained from Eqs. (121), (122), and
(123) respectively. However, integrating Eq, (126) numerically with u() as given by Fig. IIb,
we find that

-• - I x 10-. (137)

Fig. ilb - Illustrative calculations of

2- u (1u(t) (my -ery)/a ko for the same paramc,

ter vahu-s as u.sed for Fig. Ila. The threshold-
tOcrossmt, rate increases about four orders of mag.

ntud, in the neighborhood of the closest.

-2 2 approach time tr, The falsealarm probability
( 1) during a time interval Jr/rl 1 2, as calculated

r from Eq. (126), shows a 300-fold increase due to

(Itca/r) the presence of the nontargetlike object Thus
the time variation in u(t) reflects less-than-ideai
performance.

Comparison of Eqs. A137) and (136) shows that the probability of a false alarm has
increased more than 300-fold. This is a significant deficiency in performance, since the full
width of the object in the field of view is 12.5 times larger than a target.
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We examine the variation in processor performance with object size by defining the

parameter N as

N - ('r/Td). (138)

Thus N is the ratio of object size to target size. In our preceding example we assumed a value
N - 12.5 (Eq. (12Mi)). Plots of tt(t) for object sizes N - 9 and N = 6.5 are shown in Fig. 12.
All parameter values other than r are as specified by Eqs. (121) through (124).

Fig. 12 - Plot which together with Fig. lib
u /'- shows the effect of object size on the perfor-

mance of the Fig. 10 processor All parameter
values except for object size N are the same as in

201I Fig. Ilb. An object with size N - 9 target"N-9 widths causes a six-order-of-magnitude increase
in the nominai false-alarm probability during the
time interval ItIrT •< 2. As we discussed in the
text, this is established by evaluating Eq. (126)
"for mj with u(t) as given by the solid (N - 9)

2 curve in this figure. According to Eq (139) a 6%
-(-L) false-alarm probability is calculated for the 9-

Ntargol-width object. The zero intercept for
N, 6.5 N-6.5 indicates a mean crossing. Hence the Fig

. •10 processor suffers a certain false alarm against
an object 6.5 target widths i,1 extent

The N m= 9 curve in Fig. 12 shows even more dramatically than for N - 12.5 that the
absence of mean crossings is not indicative of adequate perfornt,,:ce. The threshold-crossing
rate, as calculated from Eq. (126), briefly increases by seven orders of magritude as the sensor
is scanned across the nontargetlike obiect 9 times larger than a target 'ihe probability of a
quantum-noise-induced threshold crossing, originally small,, grows to significant amplitude in
the neighborhcod of the time at which the difference betwe.1 m;,, and ,i, ,assumes its
minimum value (the "time of closest approach").

Integrating Eq. (126) numerically with u(t) as given by the N = 9 curve in Fig. 12, we

find

ifj = 0,06, N - 9, (139)

corresponding to a 6% probability of false alarm. If theic were no object in the field of view, so
that x, - 0 in Eq. (115), the expected number of false alarms during the time interval
I/T 4 2 is obtained from Eq. (136) as

m; - (9/12.5) x 3.2 x 10- 2.3 x MO-' (140)

The factor 9/12,5 in Eq., (140) is due to the linear dependence of mj on T" (Eq. ( 36)), and the
linear variation of -r with N (Eq. (138)).. Comparison of Eqs. (139) and (140) shows that the
extended object, 9 target widths wide, has caused a six-order-of-magnitude increase in the false
alarm probability,,

The dashed curve in Fig. 12 shows that the Fig, 10 processor suffers a mean Lrossing (and
hence a certain false alarm) for N = 6 5, that is, for objects 6 5 times laiger than a target
Clearly there is still considerable room for improvement in processor performance.
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Improved performanre is obtained with the processor structure depicted in Fig. 13, The

transfer function He(f) in Fig. 13 is related to H(f) as follows (Eq. (BI)):

110(f) - (2Af)-' H(f) ®a (f), (141)

corresponding to an impulse response

he(t) - (2Af)-' 00(t), (042)

where It () and he(t) are the Fourier transforms of H(f) and He(f) respectively.

.lA

Fig 13 - Candidate adaptive-threshold signal-proctssing struciure I he
estimated value of the mean video M1 is obtained as the average of time,.
delayed and tne-advanced versions of the video,, as we will give av Eq
(143). Since the ouantity ,h• (0) - Y(t) is proportional to the discrete-time
second derivative of Y(t), this processor is a Uaplacian linear Iliier,
modified to incorporate the "efficient shot noise esvinator" developed in
Appendix B

From inspection of Fig 13 and Eq. (142) the mean and variance estimates are obtained as

•h) 10)-I Y(0 - Td) + Y(0 + Tj)1/2 (143)

and
S5(t) = et/2 (t) ®[X(t- I T,) + X(0 + T,)J/2. (144)

It can be shown from Eqs. (143) and (144) that

I -'-I(m + m•) ± K I (ai+ + o.-) (145)

and

1 ,,(I))+

2 (146)
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where

0" 2t 0' 2r(t ± Td) (142a)

and

m =-- mI (y ± TI,). (147b)

Again we examine the performance of our latest candidate processor structure by consid-
ering some numerical examples. If the model filter and model background are again assumed
to be ,iven by EqF. (111) and (115) respectively, my(t) and a-y(t) are still given by "',s (116)
and (118). Equations (126), (127), and (128) for mj, u(t), and aryy0o) are also stilt qrplica-
ble. However, Eqs. (145) and (146) now replace Eqs. (125) and (135) respectively.

The first set of numerical calculations for the Fig. 13 processor is shown in Fig. 14, where
all parameter values except for r are as specified by Eqs. (121) through (124). Values of T for
Fig. 14 are given by

r=NT, , N - 5. 6.5, 9, (148)

where T,1 - 10-4 s, as given by Eq. (124). When tnj is calculated by means of Eq. (126), the
result for the expected number of false alarms during the interval Ilt/rl < 2 is

mi =9.4 x 10- 7, N=-9. (149)

corresponding to the solid curve (N 9) in Fig. 14.

N 
,/5 U

N •6,5,,,•

" N -Fig. 14 - Performance assessment of the Fig. 13
processor against objects of various sizes. All

-- 9 parameters except for object size are the same as
for Figs. It and 12. The processor experiences
no difficulty in suppressing fa!se alarms for N -
9 (against the 9-target.width object), retains mar-

-2 - I 2 ginal capability for N-6.5, and experiences a cer-t
(v-) tain false alarm for N-5.

Comparison of Eqs. (149) and (139) shows that the false-alarm probability of the Fig. 13
processor is about five orders of magnitude smaller than the false-alarm probability of the Fig.
10 processor. This is an important improvement in performance. Further comparison, of Figs.
12 and 14, shows that the Fig. 10 processor suffers a certain false alarm (a mean crossing) for
N - 6.5, but the Fig. 13 processor does not. However, inspection of Fig. 14 shows that the
Fig. 13 processor suffers a certain false alarm for N - 5 kaur an object 5 times wider than a tar-
get). Again the latest processor (Fig. 13) has considerable room for improvement as a detector
of unresolved targets.
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Noise Bandwidth and Dwell Time

In this subsection we will show that system performance against nonuniform scenes can
be improved at the expense of degraded performance against uniform scenes. We presume that
the signal processor is structured as in Fig. 13.

The key to improving this processor's performance against extended (nontargetlike)
objects is to modify the conventional search-set rule of thumb relating noise bandwidth and
dwell time [10] as given by Eq. (124):

Af - (2 Td)-. (150)
We now consider the effect on system performance of choosing a value for Af four times larger
than specified by Eq. (150):

Af - M(2 Td)-' M - 4. (149)
We refer to the processor described by Eq. (150) and Fig. 13 as an "M-I processor" or "nar-
rowband processor," and we refer to the processor described by Eq. (151) and Fig. 13 as an
"M=4 processor" or "wide-band processor." We evaluate the relative performance of the two
processors by extending the numerical example of the previous subsection.

We calculate Fig. 15 by means of the same equations as Fig. 14, except that we employ
the following parameter values (descriptive of the M-4 processor) instead of Eqs. (121)
through (124):

x0- 10-1 A, (152a)

x,- 1, (1 2b)

T - NT,1, N - 2.5, 5, (152c)

Af - 20 kHz, (153a)

fl - 8 kHz, (153b)

(Af),,,, - 16.136 kHz, (1530)

and

K - 9. (154)
From Eqs. (151) and (153)

T,, - 10-` s; (155)

thp'. is, the sensor dwell time is the same as for the previous example (Eq. (124)).

Comparison of Figs. 14 and 15 shows that the M= 1 processor suffers a certain false alarm
while the performance of the M=4 processor is barely perturbed for an object 5 target widths in
size (N= 5). Further inspection of Fig. 15 shows that the M-4 processor retains some capabil-
ity even against extended objects just 2.5 target widths in size.* Increasing the noise bandwidth
still further, by choosing M > 4 in Eq. (151), results in even greater selectivity against
extended targets.
'We cannot evaluate sensor performance using the approximate Eqs. ( 16) and (0 1) for smaller values of N due to
our slowly-varying-background approximation, Eq. (98). This limitation is due to our desire to maintain computalional
simplicity in our numerictl extmples and is not fundamental Io the theory,
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N 2\5 `rF 
ig. 15 - Perfo rm ance assessm ent of the F ig. 13

processor employing a wide-bandwidth elec-
trical filter, The noise bandwidth for this figure is
4 times larger than for Fig. 14. Processor perfor-
mance is barely perturbed by the presence of the
same 5-target-width object (N-S) that would
cause the narrow-bandwidth (M-1) processor to
experience a false alarm (Fig. 14). The wide-
bandwidth (M-4) processor retains marginal ca-
pability against an N-2.5 target-width object.
The improvement in performance against nonuni-
form scenes for the M-4 processor compared to
hthe M- I processor is gained at the expense of

degraded performance against uniform scenes.

-2 -1 1 2I I I I ({)

We now show that the improvement in performance against nonuniform scenes for values

M > I is gained at the expense of degraded performance against uniform scenes.

With the assumption that 11(f) in Fig. 13 is a bandpass characteristic, it follows from Eqs.

(82) kind (147) that for uniform backgrounds

mYr -- m- -0, (156a)

and

(T" - (TY = oy. (156,)

Thus, from Eqs. (145) and (156)

ayro = Ka- y (157)

against unstructured scenes (for which x, - 0 in Eq. (015)). Also, from Eqs. (118) and (115)
(with x, = 0), we find

T Y - (2exoAf)'1 2. (158)

Thus, from Eqs. (157), (158), and (151)

my 0  K(Af)" 2 = K M' 2. (159)

According to Eq. (159) the threshold value myo for the M-4 processor is twice as large as the

mean threshold for the M- I processor. Consequently the peak target signal strength must be
twice as great to induce a mean crossing (a certain target detection) in the M-4 processor than
in the M- I processor.*

Thic slructure of tie Fig. 13 processor ensures that a target signal does not experience significant self-thresholding.
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Alternatively it follows from Eq. (159) that we can compensate for a 4-fold increase in Af
by halving the threshold gain K., Instead of Eq. (154), the equations

K-9/2, M-4, (160)

-9, M-4,

assure that the M- 4 and M- 1 processors have equal values of m yo and hence equal values of
target signal strength required to induce a certain target detection.

From Eqs. (8), (126), (127), (128), (145), (146), and (156)

FAR ,, exp(-K 2/4) (161)

for the Fig. 13 processor, for operation against uniform scenes. It follows from Eqs. (160) and
(161) that the reduced value of threshold gain required to equalize target-detection probabilities
results in a greatly degraded uniform-background false-alarm rate for the M=4 processor as
compared with the M= I processor.,

W Analogous to our discussion Fallowing Eq., (52) the performance disadvantage described
Scan be interpreted as a uniform-background false-alarm-penalty (FAP) that accrues to the use

of wide-bandwidth processors (M > 1). For the Fig. 13 processor we can show that

FAP(M) - 1.086 K 2(I - M-1) dB. (162)

For the previous numerical example (K - 9, M - 4) we find

FAP - 66 dB.

Table 2 summarizes the results of our numerical examples.

The Promise of Focal-Plane-Array Technology

The performance disadvantage incurred by quadrupling A/ (as %,, pointed out following
Eq. (161)) can be completel) offset by replacing each detector element with four series TDI
detectors (as determined by equations similar to Eqs. (58) and (59) in the subsection "Time
Delay and Integration") Thus,.'improvements in focll-plane-arrav (FPP\ technology' 11 ;] ied-
ing to large numbers of TDI elemenis may afford us "excess," unifurm-backgruund ser.sitivit)
that we can intentionaily sacrifice in the interest of better performance against structured back,
grounds.

3
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Table 2 - Summary of performance calculations of candidate
processors. In performing example calculations, we assume that the
filter characteristic and background variation have the parametric forms
indicated in Eqs. (111) and (115) respectively.. All calculations assume
numerical values for the parameters x0, xi, K, and Td given by Eqs.
(121), (123), and (124). Calculations for narrow-bandwidth electrical
filters, Eqs. (122), correspond to the bandwidth parameter M-- 1, and
calculations for wide bandwidth filters correspond to Eqs. (153) and M
= 4. The parameter N is the ratio of object size to target size. Object
contrast relative to sensor noise-equivalent irradiance (NEI) is equal to
790 for the M- I calculations, and 395 for the M-4 calculations. The
minimum target signal strength required to assure target detection is 9
times the sensor NEI for all calculations. The last entry in the table
(N - 2.5, M - 4) indicates that a clutter object 2.5 target widths in
extent and of amplitude 395/9 - 44 times greater then the minimum
target contrast required for assured detection gives rise to a 12% proba-
bility of false alarm..

Processor Object Size Bandwidth False-Alarm Probability, It/TI K 2
Prcssr N M

N _ Nominal Degraded

Fig. 6 12.5 1 5.2 x 10-11, 1

Fig. 10 12.5 1 3.2 x 10-1 1 x 10-1
9. 1 2.3 x 10-1 6 x 10-2
6.5 1 1.7 x 10-8 1

Fig. 13 9. 1 2.3 x 10-8 9.4 x l0-7
6 5 1 1.7 x 10-l 3.5x 10-2
5. 1 1.3 x 10-8  1

Fig. 13 5 4 5.2 x 10-8 8.2 x 10-8
""2.5 4 2.6 x 10-8 1.2x 10-1
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Appendix A
CALCULATING THE AVERAGE CURRENT FROM BACKGROUND DATA

Our objective in this appendix is to derive Eq. (AS), which expresses the average value of
the random current X(t) (Fig. 1)

mx(t) =_ E(X(t) (A1)

2 as a function of the scene radiance mL and a number of important sentor parameters. We will
derive Eq. (AS) subject to the assumptions that the scene is spatially uniform (that the radiance

SmL is independent of view angle) and that the average current mx is constant with time. We
will then generalize Eq. (AS) to Eq. (A6) to allow for the possibility of spatially nonuniform
background radiances and time-variable average currents mx(t).,

The average value of the 9hotocurrent X(t) (F g. 1) may be calculated as

mx = Yie mQ, (A2)

where mx is defined by Eq. (AI), ql is the quantum efficiency of the detector [electrons per
photon], e is the electronic charge [coulombs per electron], and mQ is the average photon flux
incident on the detector [photons per second]. The quantities mx and mQ in Eq. (A2) are both
averages over the photon fluctuation statistics of the incident light. The meaning of the ensem-
ble averaging process in the present context is discussed in Part I 11]; in particular, the average
in Eq. (Al) is nota time average.

The mean photon flux incident on the detector, m0 in Eq. (A2), is given by

mQ - Adet ML//t1,, (A3)

where Adet is the active area of the photodetector [cm 2], mE is the focal-plane irradiance
[W-cm-21, and hv in the radiant energy III per photon.

The focal-plane irradiance mE in Eq. (A3) is calculated as

mE = ?rTomL/(2f#) =_ KmL, (A4)

where r, is the transmittance of the optics (dimensionless], f# is the focal-length ratio of' the
optics (dimensionless], and mL is the radiance of the scene [W-cm- 2.sr-'.

"It follows from Eqs. (A2) through (A4) that

m% = K0 R, Adet m, (AS)

where the cu:rent responsivity R, is defined Lo - i •e/hv 1A.W-1. Equation (AS) is valid for
only uniform backgrounds that fill the sensor's field of view.. Nonuniform backgrounds can be
characterized in terms of a radiance distribution
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where a and # are azimuth and elevation angles respectively. The appropriate generalization of

Eq., (A5) when the background is nonuniform is [1]

mx(t) = KR, fMTF(f)O(f) m.(f)e (/21f ", df,, (A6)

where

f = two-dimensional spatial frequency [(cycles • cm-n)2],

MTF(f) = modulation transfer function of the optical train [dimensionless],

v = focal-plane scan velocity [cmss- ] = 2ird/Tr,

"d = focal length of the optics [cm],

TF = system frame time [s],

and P(f) and mL(f) are the two-dimensional Fourier transforms of the quantities P(r) and
ml, (-r/d):

(f)= fP(r) exp(./27rf - r) dr (A7)

and

mY(f) = f m, (-r/d) exp(j27rf r) dr,, (A8)

where r is the two-dimensional focal-plane location vector [cm]. For the detector geometry
depicted in Fig. Al, the quantity P(r) in Eq. (A7) is defined as

P(r) = 1, r E fde,, (A9a)

- 0, r I (he, (A9b)

It fo~lows from Eqs (A7) and (A9) that

O(0) = Ado, [cm 2]. (AIO)

For uniform b,,kgrounds

DET

Fig. Al - Focal-plane geometry The
focal-plane irradiance is stationary in ihe
coordinate system with origin 0 Vector

""-;r, locates the center of a detector of area
Ad,, For scanning sensors r, is a func,
tion ol time

0
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m-.(f) - mi b(f), (All)

where 8(0) is the Dirac delta function. From Eqs (A6), (AI0), (Al 1), and the conventional
MTF normalization,

MTF(O) = 1, (A12)

it follows that

mx - K,, R, Ad., m, (A13)

for uniform backgrounds. Equation (A13) is consistent with Eq. (AS), as expected. Finally,
we note that the quantities mi (0) and uin(f), like mxlt), are defined as ensemble averages over
the photon fluctuation statistics, of the incident light.

1,
3Q



Appendix B

EFFICIENT ESTIMATORS FOR NONSTATIONARY SHOT NOISE

INTRODUCTION

A main result of this report is the proposal of a new signal processor structure for generat-
ing high-confidence estimates of the time-varying rms quantum noise induced in a
background-limited (BLIP) sensor as it scans a nonuniform scene. This new signal-processing
structure has the general form illustrated in Fig. BI. For reasons that we will explain shortly,
the processor depicted in Fig. BI is called an "efficient shot-noise" (ESN) estimator.

AMt 13B(t) my M-t

Fig. Bi - Efficient estimator for nonstationary shot noise. The
transfer functions H(f) and H0(f) are related by Eq. (B1)
Realization of HO(f) requires either true dc response or dc res-
toration (Eq. B2), An important feature of this processor is that
the expected value of & r is equal to the rms value of Y(t) (Eq.

Y3). All of the candidate processors in this report use the struc-
ture shown here to perform the rms quintum-noise estimation
function indicated in Fig 5.

The quantity W () in Fig BI is an cstimate for tile rms value of the random process
Y(H ; that is, er(,) is an estimate fur ,r )(). Inspection of Fig. BI shows that 5, is esta-
blished by cascading a linear filter //,)(/) with a square-root device and an amplifier of gain
(2eAf) LI. The frequcncy chlaracteiistlc tl,(1) is given by

110(f) = (2A/') 'HO/) C-tt(f'), (Bl)

where ®is the convolution operator (Eq. (10)). Also, e is the electronic charge (1.6 x 10- t9 C)
and Af is the noise bandwidth of 11(f), as defined by Eq. (25). The transfer function Ho(f)

4 • given by Eq. (BI) is always a low-pass function. Front Eqs. (25) and (11)

H0(0) = max H0(f) = 1.. (B2)
I

Thus, realization of Hu(f) always requires a sensor with either true dc response or dc restora-
tion [11,121.
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The noise estimate 6- established by the Fig. BI processor, like X(t) and Y(t), is a ran-
dom process. We show in this appendix that

in, (W) =- E{6-(t)) = a- (t),' (B3)

where E.-) denotes an ensemble average over the photon-fluctuation statistics of the incident
light [1]., Equation (B3) indicates that the ensemble average value of the noise estimate 6- Y is
equal to the actual rms noise o, y; that is, that 6-) is an "unbiased"estimate for a- y. Even so, 6-&
might assume a sufficiently large spread of values about its average to make 6- a poor estimate
for a- . To ensure that 6- y is not a poor estimate, we calculate the mean-square estimation
error:

E((& ---- E(-- oY) 2). (134)

We show in this appendix that
aq ?rr Y el Af Af° (135)

for the Fig. BI processor, where e is the electronic charge, Af is the noise bandwidth of H(f),
and Afo is the noise bandwidth of Ho(f) (Eq. (BI)).

It follows from Eq. (B3) that 6- y(t) is generally a nonstationary random process, since the
mean value of 6- y is generally nonconstant with time. It is thus surprising to see flora Eq. (B5)
that the variance of & y is time independent.,

It follows from Eqs. (B5) and (B3) and from looking ahead to Eqs. (C4) through (C6)

that the relative mean-square estimation error of the Fig. BI processor is extremely small:

(a-&/ma ) (j"a/o" a )2 - O(10-6)., (B6)

According to Eq. (B6) the variance of & r is six orders of magnitude smaller than the variance
of Y(t). This results in significant simplifications in some of the anaiysis (as we will show fol-
lowing Eq. (95) for example.)

One commonly used approach to evaluating the effectiveness of an estimator invokes the
Cram&r-Rao inequality, which provides a lower bound on o- Y [4]. We evaluate the Cramdr-Rao

lower bound for or in this appendix and show it to equal a,? as given by Eq. (B5). Con-

sistent with the conventional terminology of statistics, it follows that the Fig. BI processor
establishes an "efficient" estimate for a y.

Before proceding with the statistical arguments described, we will first show that the
discrete-time implementation of Fig. BI takes thle particularly simple form shown in Fig B2.
The quantity Tj, in Fig. B2 is both the dweil time of the sensor and the integration/sample time
of the postdetector filter.

DISCRETE-TIME IMPLEMENTATION OF THE ESN ESTIMATOR

We now assume that the postdetector filter is simply an integrate, sample, and hold dev-
ice The waveform at the output of the postdetector filter is the discrete-time random process
VU(,), where
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XMt.- INTEGRAT]E, ] =Ylk M

SAMPLE,b HOLD

Fig. B2 - Discrete-time implementation of the efficient shot-noise estima-
tot. The generic structure depicted in Fig. BI simplifies considerably when
it is implemented as a discrete-time device, since we now have
H1(f) - Ho(f). The quantity Tj is both the dwell time of the sensor and
the integration/sample time of the postdetector filter.

W(k) = Ti (k +I/2 )rd X(r) dr. (BV)

With the function rect () defined as shown in Fig. B3 [131, Eq. (W7) can be written as
W "' .r Y(k Td), (B8)

where

Y(t) = ,I rect (1/Td) ®X(t). (B9)

RECTMX)

-xi- 1/2 1/2

Fig. B3 - Definition of the function rect (X)
The impulse response of the postdetector filter is
a scaled version of rect (X) when the Fig. BI pro-
cessor is implemented in discrete time (Eq (B9)).

Comparing Eqs. (10) and (M9), we see that the impulse response of the postdetector filter is

/(t) - Tj rect (01 T). (810)

Taking the Fourier transform of Eq. (BI0), we obtain 1131

H(f) = sinc(fTd) -= (irfTd)-' sin(rifT,). (B11)
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It follows from Eq. (BII) that H(f) is normalized properly (Eq. (24)):

H(G) - max H(f) - 1., (B12)f

Thus, from Eqs. (21), (25), and (BIG),

Af- (2Td)-., (B13)

In addition it follows from Eqs. (142), (B30), and (B13) that

/10(t) - /1(t). (B14)

Finahy it follows from Eqs. (B13) and (B14) that the discrete-time implementation of Fig. BI

takes the particularly simple form depicted in Fig. B2.

ESTIMATOR BIAS

Our purpose in this section is to show that

Ell& - oaY) - 0. (B15)

According to Eq. (B15) the mean estimation error is zero, so that & ) provides an unbiased esti-
mate for o, y.,

It follows from Fig. BI that

& t (2e- f)112 B(t). (B16)

Taking the expected value of both sides of Eq., (B16), we obtain

m;- (2eAf)" 2 min. (B17)

From Eq, (B17) and the relation mn - m/2 (1 -E), which we will give as Eq, (C40), where e
- (1/2) (o'A/2mA) 2, which we will give as Eq. (C42),

M - (2eAf nAW)/ (1 - E). (B18)

It follows from inspection of Fig. BI that

A(t) W -= (t) ®,X(), (B19)

where ®is the convolution operator and hj(t) is the Fourier inverse of 1t0(j).

ho(t) = F-I{Ho(f).. (B20)

It can be shown from Eqs. (BI) and (B20) and the convolution theorem for Fourier transforms
that

(B210

Thus from LL-., (1119) and (1321)

A(t) = (2Af) 1 00)®X(t). (B22)

Taking the expected value of both sides of Eq. (1322), we find

-(t) = (21/) 1 112()43) (B23)
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Substituting Eq. (B23) into Eq. (B18), wt obtain

I rn (t) - [e/h2(t) ®mx(t)]" 2 (1 -E) (B24)

However, from Eq. (29)

Y '(1) - ell2(1) ®mx(t)r (B25)

Thus from Eqs. (B24) and (B25)

n,; (i) -k 0 (t(l -(1 (B26)

or

= e - O(10-6). (B27)

According to Eq. (B27) the mean estimation error for oa y is six orders of magnitude smaller
than a y itself. The Fig. BI processor is thus described as an asymptotically unbiased estimd.or
for oa.

MEAN-SQUARE ESTIMATION ERROR

In deriving Eq. (B5) we first note that

(r? = E((i - crý)2} E{((') + r2 - 2(r) /(&.4 (1B28)

It follows from Eq. (B26) that

E& y = m&a - (-), (B29)

where again, as we will give as Eq. (C42),

.e = ,cr 12?4)•. (B30'
2

Since from Fig. BI

ri(i) = 2eA A (A), (B31)

it follows from Eq. (B22) that

&r (0) = e/('0() ®X (t). (B32)

From Eq. (B32)
2:{/: (j)} 1 , ,2(l) ®ý tý{Jp j)}

00e h )() ®t(t). (B33)

From Eqs (B33) and (P25)

E =,i -- 1 r 2(W). (B34)

From E-qs (B28), (B29), and (134)

=2E01. (835)
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Since, as we will give as Eq. (C6), crA/mA - 0 (10-3), it follows from Eqs. (B35) and (B30)

that

(('& -)2 _ 0(10-6), (836)

verifying Eq. (B6).

From Eqs. (B30), (B23), (B25), and equations we will derive as Eqs. (C40) through
(C43)

2e - e2 Af Afdo2.. (B37)

Equation (B5), which is one of the principal results of this appendix, now follows from Eqs.((B35) and (B37):: a ? -e lafAf0  (B38)

CRAMER-RAO INEQUALITY

As shown by Van Trmes [4, p. 661, the mean-square estimation error defined by Eq. (B4)
must satisfy the Cramdr-Rao inequality

, CRIB.,. (B39)

The Cramdr-Rao lower bound a 2RsI8 is dtfined as

CRLB a -E({., .: In f ,,1•&1I!" )I. (140)

where,.,,y denotes the second partial derivative with respect to o(r and f.,, r,, (5 1r y)is

the probability density function for &y conditioned on (r-. Since &) is obtained as the square
root of a Gaussian random process, its density function is readily adapted from the literature
114, pp. 287-2901]

(a-) +_ & + 11"A), (B41)

where a& is given by Eq. (B38), A.() is the unit-step function, and •(.) is defined as

.(X) - (2v)-1/ 2 exp(-x 2/2). (B42)

Since

012(, r 2 tr 
B3

for all value of' e& , it follows from Eq (B6) ,iat the second term within the brackets on the
right-hand ,ue of Eq. (B41) contributes negligibly to J',, so that

'2 (144)

I5 ~A
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Taking the natural logarithm of Eq., (B44) and then the second partial derivative with respect to
y y, we obtain

-,, cr( f, Yf (2) ) 2 [1 + 3(&y/o') 4 ]. (B45)

Also it can be shown from Eq. (B44) that

E I(& r/o Y) 47 , "1, (B46)

to the same order of approximation as in Eq. (C27),

From Eqs. (B40), (B45), and (B46)

a" 2 RL - C'2 ,- e2 Af Afo. (B47)

Since the mean-square estimation error (r? is equal to the Cramdr-Rao lower bound, the Fig.

BI processor is a generator of" "efficient" estimates for a,
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Appendix C
"SQUARE ROOT OF A GAUSSIAN RANDOM PROCESS

INTRODUCTION

Our purpose in this appendix is to derive simple expressions fc1' the mean and variance ofI... the square root B(t) of a Gpu~sian random process A (W) (Fig. 6). The mean and variance of

A (t) are called mA(t) and r 2(t) respectively. The mean and variance of B(t) are called mya(t)11 and oJ () respectively.

We will derive the relationships

' and
)a ) [o'(t)/m4A(t)], (C2)

subject to the assumption that

S(T,4(t)/m'l(t) << . (C3)

The validity of Eq. (C3) is assured in that the process A (t) is the output of a background-
limited (BLIP) infrared sensor, for which

Iro A2 2elJo M,', (C4)

where e is the electronic charge and Af 0 is the noise bandwidth (Eq (25)) of the filter /10(./)
(Fig. 6). Although Eq. (C4) is only approximately correct for time-varying mAlt) (as we will
see from Fq. (108)), it can be used to provide an order-of-magnitude estimate for (7 41/".1 We
assume for illustrative purposes that

a m4 = 10-9 A (CSa)
and

Af0 - 2500 Hz.. (CSb)

4 'It follows from Eqs. (C4) and (0') that

( r 4/m?14 = 0(10-3), (C6)

justifying 'q (('3).

MATItEM \ HCAL PRELIMINARIES

We write the probability density function of A (t) as

(a a -- m4
] 4 (a) = (Y 1 1 •--"' j. ('7,)

47
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where we define 40 (0) as the normalized Gaussian density..

-x)= (2ir)- 1 2 exp (-x 2/2)., (C8)
Since

; (i) ,. IA ()t"l 2 , (C9)

it follows from Eq. (C7) that

mB -A •o f laf I/ a- mA da. (CIO)aAi ' Also,
SAlo j= £182) - mB, (ClI )

where EH.} is the statistical expectation operator and

SE IB 2} - .o,• -I la l ¢ a - m A da( 12
EAf da. (C12)

We devote the remainder of this appendix to developing estimates for Eqs. (C10) and (C12).

EVALUATION OF IEB2)

We now write Eq. (C12) as

E(B2) _ 1 + /2, (C13).

where

-1 -- f W a MA da (C14)

and

1, •. o< a -[a + m, Ida. (C15)

Moreover we write Eq, (C14) as

)= I + 112, (C16)

where

a• [ a - mA da = m. ((17)

and

112= of a 0 + da =12. (C18)

From Eqs. (C13), (016), (C17), and (C18)

E{B"2) -- IA + 212, (C19)

where 12 is given by Eq. (C15).
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We now write Eq. (C15) as

12= - fCA a k (a/A)g(a) da, (C20)

where by definition
(,,L,., -I--

g(a) • a + MA a. (C2 1)SI I oA C oA

It can be shown that

max g(a) l g(0) - (21r)'/ 2 
Ok(mA,/rA). (C22)• ! 0<a<-*

From Eqs. (C20) and (C22)

12 < ojA' (21r)' 12 fm•(/o'A) f aC(a/oA) da. (C2.)

Since the integral in Eq. (C23) evaluates exactly as o.A, it follows that

12 < (210)'/ 2 C'A k(mA/o'A). (C24)

From Eqs. (C19) and (C24)

E{B 2I - mA (I + EA), (C25)

where

CA < 2!(2r)I/2 I 'A 1 '0 (C26)
~A MA j A

It follows from Eqs. (C6), (C25), and (C26) that the quantity EA is truly negligible and that to

all intents

EtB)- MAI: (C27)

EVALUATION OF mg

We now write Eq. (CIO) as

M8 - 13 + 14, (C28)

where

1f a1 da, (C29)

and

14 C-- aI a /2 a M da. (C30)I t O'A I

Equation (C30) can be estimated by means similar to those used in estimating Eq. (CI5) to
obtain the bound

71T !12 1E
14 < MA~/'2 my _- _1j1. M31)
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It follows from Eqs. (C6) and (C31) that

14 = 0, (C32)

to the same order of approximaticn as Eq. (C27).,

The first step in evaluating 13 is to write Eq. (C29) as

MA1 1/m2 , 1 + (u)du. (C33)

Writing a binomial expansion for the square root of the bracketed quantity in Eq. (C33), we
obtain

31 fl , 12
13 m/2130 + 1 /32+ (C34)

13 - AI~ 2 MAJ 8 LmA

where

/u b(u)du , j = 1, 2. 3. (C35)131 - ( 411r 4)

It can be shown from Eqs. (C6) and (C35) that

130 - /32 -1 (C36)

and

131 = 0 (C37)

to the same order of approximation as Eqs. (C27) and (C32).

From Eqs. (C28), (C32), (C34), (C36), and (C37)

imi -- mIA/2 1- i'•AI1 (C38)1 1 IOA 121,
m 1' 8 MA~

From Eqs. (CI 1), (C27), and (C38)
I 2 2

= A , 4A (C39)
(T8 2MA 4M A

From Eqs. (C6), (C38), and (C39)

man = nA12 (I - )(C

and

CrBn= - (o' 4/m 4 ) (1 + E), (C41)
2

where I. (a 4/2t 4 )2 = 0(10-6). (C42)

Thus, Eqs. (CH) and (C2) have been validated, and the relative errors have been estimated
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Finally from Eqs. (C4) and (C39)

(B2 = 2eAf4mA - eAfod2. (C43)

It is interesting to compare Eqs. (C4) and (C43). According to Eq. (C4) the noise at the input
to the square-root device is a function of mA (,and hence the mean photon flux incident on the
detector). However, Eq. (C43) indicates that the noise at the output of the square-root device
is independent of the mean photon flux.
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